映射是一种特殊的对应。设A,B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A--->B为从集合A到集合B的一个映射 ⑴设A={1,2,3,4},B={3,5,7,9},集合A中的元素x按照对应关系“乘2加1”和集合B中的元素2x+1对应,这个对应是集合A到集合B的映射。 ⑵设A=N*,B={0,1},集合A中的元素按照对应关系“x除以2得的余数”和集合B中的元素对应,这个对应是集合A到集合B的映射。 ⑶设A={x|x是三角形},B={y|y>0},集合A中的元素x按照对应关系“计算面积”和集合B中的元素对应,这个对应是集合A到集合B的映射。 ⑷设A=R,B={直线上的点},按照建立数轴的方法,是A中的数x与B中的点P对应,这个对应是集合A到集合B的映射。 ⑸设A={P|P是直角坐标系中的点},B={(x,y)|x∈R,y∈R},按照建立平面直角坐标系的方法,是A中的点P与B中的有序实数对(x,y)对应,这个对应是集合A到集合B的映射。