只要说明[1·3·……·(2n-1)]/[(n+2)!]=[(2n)!]/[(n!)𠆢2·(n+1)·(n+2)·2𠆢n]即可分子分母同乘2𠆢n·n!=2·4·……·2n分子变成(2n)!分母原(n+2)!=(n+1)(n+2)·n!乘以n!即得到所要结果