(Ⅰ)设等差数列{an}的公差为d,
由题意,得
,解得
a1+d=8 4a1+6d=40
,
a1=4 d=4
∴an=4n;
∵Tn-2bn+3=0,∴当n≥2时,Tn-1-2bn-1+3=0,
两式相减,得bn=2bn-1,(n≥2)
又当n=1时,b1=3,
则数列{bn}为等比数列,
∴bn=3?2n?1;
(Ⅱ)cn=
4n n为奇数 3?2n?1 n为偶数
∴P2n+1=(a1+a3+…+a2n+1)+(b2+b4+…+b2n)
=
?(n+1)+4+4(2n+1) 2
6(1?4n) 1?4
=22n+1+4n2+8n+2.