已知等差数列{an}的前n项和为Sn,且a2=8,S4=40.数列{bn}的前n项和为Tn,且Tn-2bn+3=0,n∈N*.(Ⅰ)求

2025-05-13 23:32:26
推荐回答(1个)
回答(1):

(Ⅰ)设等差数列{an}的公差为d,
由题意,得

a1+d=8
4a1+6d=40
,解得
a1=4
d=4

∴an=4n;
∵Tn-2bn+3=0,∴当n≥2时,Tn-1-2bn-1+3=0,
两式相减,得bn=2bn-1,(n≥2)
又当n=1时,b1=3,
则数列{bn}为等比数列,
bn=3?2n?1;                  
(Ⅱ)cn
4n      n为奇数
3?2n?1  n为偶数

∴P2n+1=(a1+a3+…+a2n+1)+(b2+b4+…+b2n
=
4+4(2n+1)
2
?(n+1)+
6(1?4n)
1?4

=22n+1+4n2+8n+2.