(Ⅰ)当n≥2时,tS n -(2t+1)S n-1 =t ① tS n+1 -(2t+1)S n =t ② ②-①得:ta n+1 -(2t+1)a n =0, ∵ t>0∴ a n+1 =
又当n=2时,由a 1 =1,t(a 2 +a 1 )-(2t+1)a 1 =t,得a 2 =
由于a n ≠0,
即数列{a n }是首项为1,公比为
(Ⅱ)由(1)知f(t)=
又b 1 =1,所以数列{b n }是以1为首项,2为公差的等差数列. 故 b n =2n-1,n∈ N * (12分) (Ⅲ)由Ⅱ知,T n = n+
若t=1,则等比数列{a n }是首项为1,公比为3,所以 a n = 3 n-1 , 则 T n - a n = n 2 - 3 n-1 , 当n=1时, T n - a n = n 2 - 3 n-1 =1-1=0 ,此时T n =a n . 当n=2时, T n - a n = n 2 - 3 n-1 = 2 2 -3=1>0 ,此时T n >a n . 当n=3时, T n - a n = n 2 - 3 n-1 = 3 2 - 3 2 =0 ,此时T n =a n . 当n=4时, T n - a n = n 2 - 3 n-1 = 4 2 - 3 3 =-11<0 ,此时T n <a n . 当n>4时, T n - a n = n 2 - 3 n-1 <0 ,此时恒有T n <a n . 综上当n=1或3时,T n =a n ,当n=2时,T n >a n ,当n≥4时,T n <a n . |