R(a)=1,T(a)=0R(b)=0,T(b)=0R(c)=1,T(c)=1则当x=a或b时,R(x)⋀T(x) = 0此时(R(x)⋀T(x))→¬Q(x) = 1当x=c时,R(x)⋀T(x) = 1此时(R(x)⋀T(x))→¬Q(x) = 1 当且仅当¬Q(x) =1 ⇔ Q(x)=0因此∀x((R(x)⋀T(x))→¬Q(x) ) ⇒ Q(x)=0再根据第1个条件,∀x(P(x)⋁Q(x)) 可以推出 ∀x P(x)从而 ∀x P(x) ⇒ ∃xP(x)