已知双曲线x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1和F1,点O为双曲线的中心,点P在双曲线的右支上

2025-05-19 12:03:14
推荐回答(1个)
回答(1):

解:F1(-c,0)、F2(c,0),内切圆与x轴的切点是点A
∵|PF1|-|PF2|=2a,及圆的切线长定理知,
|AF1|-|AF2|=2a,设内切圆的圆心横坐标为x,
则|(x+c)-(c-x)|=2a
∴x=a;
即|OA|=a,
在三角形PCF2中,由题意得,它是一个等腰三角形,PC=PF2
∴在三角形F1CF2中,有:
OB=

1
2
CF1=
1
2
(PF1-PC)=
1
2
(PF1-PF2)=
1
2
×2a=a.
∴|OB|=|OA|.
故选B.