解答:证明:(1)如图,连接CD.
∵AB=AC,∠BAC=90°,
∴△ABC是等腰直角三角形,∠A=∠B=45°,
∵D为BC中点,
∴BD=CD,CD平分∠BCA,CD⊥AB.
∴∠DCF=45°,
在△ADE和△CFD中,
,
AE=CF ∠A=∠FCD AD=CD
∴△ADE≌△CFD(SAS),
∴DE=DF,∠ADE=∠CDF.
∵∠ADE+∠EDC=90°,
∴∠CDF+∠EDC=∠EDF=90°,即DE⊥DF.
(2)∵△ADE≌△CFD,
∴S△AED=S△CFD,
∴S四边形CEDF=S△ADC,
∵D是AB的中点,
∴S△ACD=
S△ACB=1 2
×2×2=2.1 2
∴S四边形CEDF=1.