已知函数f(x)=sin平方x+根号3sinxcosx+2cos平方x,求函数f(x)的最小正周期和单调递增区间
f(x)=
(sinx)^2
+3
cosx*sinx
+
2(cosx)^2
=
(cosx)^2+1
+
1.5*2sinx*cosx
=
-cos2x/2
+1.5
+1.5
sin2x
故
最小正周期
为
π
答:
f(x)=(sinx)^2+√3sinxcosx+2(cosx)^2
=1+(cosx)^2+(√3/2)*2sinxcosx
=1+(1/2)(cos2x+1)+(√3/2)*sin2x
=(√3/2)sin2x+(1/2)cos2x+3/2
=sin(2x+π/6)+3/2
0<=x<=π/4
0<=2x<=π/2
π/6<=2x+π/6<=2π/3
所以:1/2<=sin(2x+π/6)<=1
所以:1/2+3/2<=f(x)<=1+3/2
所以:值域为[2,5/2]
f(x)=根号3sin2x+cos2x
=2sin(2x+π/6)
x∈【0,π/4】
2x+π/6∈【π/6,2π/3】
f(x)∈【1,2】