高数求和函数

帮忙看一下第二问,求详细的解题步骤,谢谢!
2025-05-06 10:40:14
推荐回答(2个)
回答(1):


∑[n:1→∞]x^n /4^n =∑[n:1→∞](x/4)^n

显然,当-1

部分和Sn=(x/4)[1-(x/4)^n] /(1- x/4) 

=x[1-(x/4)^n] /(4-x)

故和函数S=lim[n→+∞]Sn

=lim[n→+∞]x[1-(x/4)^n] /(4-x)

=x(1-0)/(4-x)

=x/(4-x)





回答(2):

隔项级数。得收敛半径的平方
R^2 = lima/a = lim(2n+2)(n+1)!/[n!(2n+4)]
= lim(n+1)^2/(n+2) = +∞, R = +∞
(n+2)x^(2n+1)/n! = ∑[x^(2n+2)/n!]'
= [∑(x^2)^(n+1)/n!]' = [x^2∑(x^2)^n/n!]'
= {x^2[e^(x^2)-1]}' = [x^2e^(x^2)-x^2]'
= 2xe^(x^2)+ 2x^3e^(x^2)-2x = 2x(1+x^2)e^(x^2) - 2x
(-∞ < x < +∞)