高中数学第2题怎么做

2025-05-21 09:16:29
推荐回答(5个)
回答(1):

首先函数定义域关于原点对称, sin(-x)=-sinx
又 f(-x)=log[(1-2sin(-x))/(1+2sin(-x))]
=log[(1+2sinx)/(1-2sinx)]
=-log[(1-2sinx)/(1+2sinx)]
=-f(x)
因此函数为奇函数

回答(2):

(1-2sinx)/(1+2sinx)>0 (1-2sinx)(1+2sinx)>0 -1/2关于原点对称 因为 f(-x)=log3(1-2sin-x)/(1+sin-x)=log3(1+2sinx)/(1-2sin2x)=log3[(1-2sinx)/(1+2sinx)]^-1=-log3(1-2sinx)/(1+2sinx)=-f(x) 所以f(x)为奇函数

回答(3):

∵f(-x)=-f(x)
∴是奇函数。

如果你觉得我的回答比较满意,希望你给予采纳,因为解答被采纳是我们孜孜不倦为之付出的动力!

回答(4):

定义域为-1/2f(-x)+f(x)=log3 (1-2sinx)/(1+2sinx)* (1+2sinx)/(1-2sinx)=log3 (1)=0
因此为奇函数
选A

回答(5):

你把x=0、兀/2、-兀/2分别带进去