证明:设h(x)=f(x)-g(x)则h(x)=ln(x+1)+x^2/2-x (x>-1) h'(x)=1/[x+1]+x-1令h'(x)=0得 x=0当x>0时,h'(x)>0,h(x)单调递增即 h(x)>h(0)=0 ln(x+1)+x^2/2-x >0 ln(x+1)>x-x^2/2 f(x)>g(x)于是对任意的x∈(0,+∞),f(x)>g(x)