你题目中把
(c-d)
误打成
c-a
了
只需证明
(a-d)
[1/(a-b)+1/(b-c)+1/(c-d)]
>=
9
[1/(a-b)
+1/(b-c)
+1/(c-d)](a-d)
=[1/(a-b)
+1/(b-c)
+1/(c-d)](a-b+b-c+c-d)
=
[1
+
(b-c)/(a-b)
+
(c-d)/(a-b)]
+
[1
+
(a-b)/(b-c)
+
(c-d)/(b-c)]
+
[1
+
[(a-b)/(c-d)
+
(b-c)/(a-d)]
=
3
+
[(b-c)/(a-b)
+
(a-b)/(b-c)]
+
[(c-d)/(a-b)
+
(a-b)/(c-d)]
+
[(c-d)/(b-c)
+
(b-c)/(c-d)]
≥
3
+
2
+
2
+
2
=
9
所以
:
1/(a-b)+1/(b-c)+1/(c-d)>=9/(a-d)
题目中用到了(x-y)^2≥0
所以
x^2
+
y^2
≥2xy
这一性质
例如
[(b-c)/(a-b)
+
(a-b)/(b-c)]
≥
2
√[(b-c)/(a-b)]
*
√[(a-b)/(b-c)]
=
2