已知函数f(x)=2msin^2x—2乘以根号3乘以msinxcosx+n,定义域为[0,丌⼀2]

2025-05-18 01:55:09
推荐回答(2个)
回答(1):

f(x)=m(1-cos2x)-√3msin2x+n=-m(√3sin2x+cos2x)+m+n=-2msin(2x+π/6)+m+n
在[0,π/2],2x+π/6的区间为[π/6,7π/6], 此时sin(2x+π/6)的值域为[-1/2,1]
若m>0, 则最大值=m/2+m+n=4; 最小值=-2m+m+n=-5, 解得:m=18/5, n=-7/5;
若m<0,则最大值=-2m+m+n=4,最小值=m/2+m+n=-5,解得:m=-18/5, n=2/5
故f(x)=-36/5sin(2x+π/6)+11/5,
或f(x)=-36/5sin(2x+π/6)-16/5

回答(2):