f(x)=A/sin(wx+a)(w>0,|a|<π/2)的部分图像如图所示:求f(π/24)=
解析: f(x)= A/sin(wx+a)(w>0, |a|<π/2)
设g(x)=Asin(wx+a)
由图可知A=2,T/2=5π/12+π/12=π/2==>T=π==>w=2
∴g(x)=2sin(2x+a)
其最大值点为(5π/12-π/12)/2=π/6
∴g(π/6)=2sin(π/3+a)=2==> π/3+a=π/2==>a=π/6
∴ f(x)=2/sin(2x+π/6)
f(π/24)=2/sin(π/12+π/6)=2√2
A=2(因为该函数取值范围是大于等于A或小于等于-A(分母正弦值取正负1时取到两个值))
w=2(周期是(5/12*π--π/12)*2=π,所以π=2*π/w,w=2)
a=π/6,因为令x=(5/12*π+-π/12)/2=π/6(就是中点)
则f(x)=2/sin(2*π/6+a)=2 2*π/6+a=π/2 a=π/6
所以代入f(π/24)=2/(sin(π/4))=根号2