如图在三角形ABC中,AD是BC边上的中线,E是AD 的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,求

(1)AF等于CD (2)角AFC=角CDA
2025-05-21 12:30:41
推荐回答(1个)
回答(1):

1、∵AD是BC边上的中线,点E是AD的中点
∴BD=CD,AE=DE
∵AF∥BC
∴∠F=∠EBD,∠FAE=∠BDE
∴△AFE≌△DBE(AAS)
∴AF=BD=CD
即CD=AF
2、∵AF=CD,AF∥CD
∴AFCD是平行四边形
∴只要∠ADC=90°,AFCD是矩形
∵∠ADC=90°,即AD⊥BC
AD是中线
即∠ADC=∠ADB=90°
AD=AD,BD=CD
∴△ADB≌△ADC(SAS)
∴AB=AC
即△ABC是等腰三角形时,四边形AFCD是矩形
如果答案对您有帮助,真诚希望您的采纳和好评哦!!
祝:学习进步哦!!
*^_^* *^_^*