x,y,z>0。xy+xz+yz=1。求证xyz(x+y+z)小于等于1⼀3

x,y,z>0。xy+xz+yz=1。求证xyz(x+y+z)小于等于1/3
2025-05-19 21:18:27
推荐回答(1个)
回答(1):

∵xy+xz+yz=1,
∴(xy+xz+yz)^2=1,
∴(xy)^2+(xz)^2+(yz)^2+2xy·xz+2xy·yz+2xz·yz=1,
∴(xy)^2+(xz)^2+(yz)^2=1-2xyz(x+y+z),
∴(xy)^2+(xz)^2+(yz)^2-(2/3)(xy+xz+yz)=1/3-2xyz(x+y+z),
∴(xy-1/3)^2+(xz-1/3)^2+(yz-1/3)^2=2/3-2xyz(x+y+z)。
显然有:(xy-1/3)^2+(xz-1/3)^2+(yz-1/3)^2≧0,
∴2/3-2xyz(x+y+z)≧0,
∴xyz(x+y+z)≦1/3。