证明:(1)由an+1=
得:an 2an+1
-1 an+1
=2,且1 an
=1,1 a1
∴数列{
}是以1为首项,以2为公差的等差数列;1 an
(2)由(1)得:
=1+2(n-1)=2n-1,1 an
故an=
;1 2n-1
(3)由
=2 bn
+1得:1 an
=2n-1+1=2n,2 bn
∴bn=
,1 n
从而:bnbn+2=
=1 n(n+2)
(1 2
-1 n
),1 n+2
则Tn=b1b3+b2b4+…+bnbn+2
=
[(1-1 2
)+(1 3
-1 2
)+…+(1 4
-1 n
)]1 n+2
=
(1+1 2
-1 2
-1 n+1
)1 n+2
=
-3 4
(1 2
+1 n+1
)<1 n+2
.3 4