已知数列{an}中,a1=1,an+1=an2an+1(n∈N*).(1)求证:数列{1an}为等差数列;(2)求数列{an}的通项

2025-05-14 09:31:28
推荐回答(1个)
回答(1):

证明:(1)由an+1=

an
2an+1
得:
1
an+1
-
1
an
=2
,且
1
a1
=1

∴数列{
1
an
}
是以1为首项,以2为公差的等差数列;
(2)由(1)得:
1
an
=1+2(n-1)=2n-1

an=
1
2n-1

(3)由
2
bn
=
1
an
+1
得:
2
bn
=2n-1+1=2n

bn=
1
n

从而:bnbn+2=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

则Tn=b1b3+b2b4+…+bnbn+2
=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)+…+(
1
n
-
1
n+2
)]

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)

=
3
4
-
1
2
(
1
n+1
+
1
n+2
)<
3
4