已知各项均为正数的数列{an},其前n项和为Sn,且满足4Sn=(an+1)2(Ⅰ)求数列{an}的通项公式;(Ⅱ)设

2025-03-20 20:07:42
推荐回答(1个)
回答(1):

(本小题满分13分)
(Ⅰ)∵4Sn=(an+1)2当n≥2时,4Sn?1=(an?1+1)2
两式相减得:(an+an-1)(an-an-1-2)=0
又an>0故an-an-1=2,
∴{an}是以2为公差的等差数列
又a1=1,
∴an=2n-1.(6分)
(Ⅱ)∵bn+1abn=2bn?1
∴bn+1-1=2(bn-1)
又b1-1=2≠0,∴{bn-1}是以2为公比的等比数列,
bn?1=2n
bn2n+1
cnanbn=(2n?1)2n+(2n?1)
An=1×2+3×22+…+(2n?1)2n,①
2An=1×22+3×23+…+(2n-1)?2n+1,②
①-②,得:-An=2+22+23+…+2n-(2n-1)?2n+1
=

2(1?2n)
1?2
?(2n?1)?2n+1
由错位相减得:
An=(2n?3)2n+1+6
Tn=(2n?3)2n+1+n2+6.(13分)