(1)∵a1=1,an+1=Sn+3n+1(n∈N*),①
∴当n≥2时,an=Sn-1+3(n-1)+1②
①-②得an+1-an=an+3,即n≥2时,an+1=2an+3,
又a2=S1+4=5=2a1+3,故对一切正整数n,an+1=2an+3,
则有an+1+3=2(an+3),所以数列{an+3}是公比为2,首项为a1+3=4的等比数列,
故an+3=4?2n-1,
∴an=2n+1-3(n∈N*).
(2)bn=
1=2n
anan_+
?1 2
1=
2n^+ ^
?1 2
2=(2n^+ ^
(1 2
1?3-1
2n^+
2?3),1
2n^+
故Tn=b1+b2+…+bn=
[(1 2
-1
22?3
)+(1
23?3
-1
23?3
)+…+(1
24?3
1?3-1
2n^+
2?3)]1
2n^+
=
×(1 2
-1
22?3
2?3)=1
2n^+