∵CE⊥AD,∴∠ADE=∠ADC=90°,∵在Rt△ADE和Rt△ADC中, ∠EAD=∠CAD AD=AD ∠EDA=∠CDA ,∴△ADE≌△ADC(ASA),∴AE=AC=10,ED=DC,又∵点F是BC中点,∴DF是△CBE的中位线,∴DF= 1 2 BE= 1 2 (AB-AE)=3.