已知正项数列{an}的前n项和为Sn,Sn是14与(an+1)2的等比中项.(1)求a1,a2,a3;(2)求证:数列{an}

2025-05-13 07:09:49
推荐回答(1个)
回答(1):

(1)解:(

Sn
2=
1
4
(an+1)2

即Sn=
1
4
(an+1)2

当n=1时,a1
1
4
(a1+1)2
,a1>0,
解得a1=1.
S2=1+a2
1
4
(a2+1)2
,a2>0,
解得a2=3,
S3=4+a3
1
4
(a3+1)2
,a3>0,
解得a3=5.
(2)证明:由(1)得Sn
1
4
(an+1)2

当n≥2时,Sn-1=
1
4
(an?1+1)2

∴an=Sn-Sn-1=
1
4
(an2?an?12+2an?2an?1)

即(an+an-1)(an-an-1-2)=0,
∵an>0,∴an-an-1=2.
∴数列{an}是等差数列.
(3)解:由(2)得an=2n-1,∴an≥m,即为2n-1≥m,
∴n
m+1
2

①m为奇数,则nmin
m+1
2
,∴S2m
2m2+3m
2

②m为偶数,则nmin=
m+2
2
,∴S2m
2m2+5m
2

综上所述,S2m=