(1)∵S△ACD:S△ADB﹦1:2,
∴BD=2CD,
∵DC=3,
∴BD=2×3=6,
∴BC=BD+DC=6+3=9,
∵∠CAD=∠B,∠C=∠C,
∴△ABC∽△DAC,
∴
=AC CD
,BC AC
即
=AC 3
,9 AC
解得AC=3
;
3
(2)由翻折的性质得,∠E=∠C,DE=CD=3,
∵AB∥DE,
∴∠B=∠EDF,
∵∠CAD=∠B,
∴∠EDF=∠CAD,
∴△EFD∽△ADC,
∴
=(S△EFD S△ADC
)2=(DE AC
)2=3 3
3
.1 3