解∫[π/6,π/3]da∫[π,2π]arctan[(rsina)/(rcosa)]rdr=∫[π/6,π/3]da∫[π,2π]arctan[tana]rdr=∫[π/6,π/3]da∫[π,2π]ardr=(3π^2/2)∫[π/6,π/3] ada=(3π^2/2)*(π^2/24)=π^4/16就是转化为极坐标再去积分,注意rdr