【高二数学】设a,b>0,a+b=4,则根号(a+1)+根号(b+3)的最大值为多少?

2024-10-30 13:43:27
推荐回答(2个)
回答(1):

a>0,b>0,表达式有意义
b=4-a
b>0,4-a>0,a<4,又a>0,因此0[√(a+1)+√(b+3)]²
=a+1+b+3+2√[(a+1)(b+3)]
=(a+b)+4+2√[(a+1)(4-a+3)]
=4+4+2√(-a²+6a+7)
=8+2√[16-(a-3)²]
a=3时,16-(a-3)²取得最大值。16-(a-3)²≤16
[√(a+1)+√(b+3)]²=8+2√[16-(a-3)²]
≤8+2√16
=16
√(a+1)+√(b+3)≤4
√(a+1)+√(b+3)的最大值为4

回答(2):

可尝试用 a 等于 4-b带进去变成一元的然后求导判断单调性来求