由正弦定理得:b/sinB=c/sinC
bsinC=csinB
b²*sin²C+c²*sin²B=2bc*cosB*cosC
=b²*sin²C+c²*sin²B-2bcsinBsinC+2bcsinBsinC
=(bsinC-csinB)^2+2bcsinBsinC
=2bc*sinB*sinC
2bc*sinB*sinC=2bccosB*cosC
sinB*sinC=cosB*cosC
cosB*cosC-sinB*sinC=0
cos(B+C)=0
B+C=90
所以三角形ABC为直角三角形。
解:a²tanB=b²tanA
∴a²/b²=tanA/tanB
根据正弦定理:a/sinA=b/sinB
∴a/b=sinA/sinB
∴sin²A/sin²B=tanA/tanB
即sinA/sinB=cosB/cosA
∴sinAcosA=sinBcosB
∴sin2A=sin2B
∴2A=2B或2A+2B=π
∴A=B或A+B=π/2
∴△ABC为等腰三角形或直角三角形
判断三角形的形状,从两方面考虑
1.角的方面,看是锐角,直角还是钝角三角形
2.边的方面,看是不是等腰或者等边
正弦定理:a/sinA=b/sinB=c/sinC=2R(R是三角形外接圆的半径)
a=2RsinA,b=2RsinB,c=2RsinC,代入条件,约掉2R,整理
第1题sinBsinC(sinBsinC-cosBcosC)=0
cos(B+C)=0,B+C=90度,是直角三角形
第2题tanB=sinB/cosB,tanA=sinA/cosA,把上述正弦定理的结果代入,两边约分,得sinAcosA-sinBcosB=0
sin2A=sin2B
2A=2B或2A+2B=180度
是等腰或者直角三角形
主要是三角的公式要熟练运用,希望可以帮到你
三角形ABC的形状是直角三角形,证明如下:
∵a/simA=b/sinB=2R,
a=sinA*2R,b=sinB*2R,
(a^2+b^2)sin(A-B)=(a^2-b^2)sin(A+B),
等式右边有:
(a^2-b^2)sin(A+B)=sin(A+B)*(a+b)(a-b)
=sin(A+B)*[(sinA+sinB)(sinA-sinB)]*(2R)^2
=sin(A+B)*{2sin[(A+B)/2]*cos[(A-B)/2]*2cos[(A+B)/2]*sin[(A-B)/2]}*(2R)^2
=sin(A+B)*sin(A+B)*sin(A-B)*(2R)^2
左边的sin(A-B)跟右边的sin(A-B)约后有
(a^2+b^2)=[sin(A+B)]^2*(2R)^2,
而,A+B=180-C,
sin(A+B)=sinC,sinC=c/2R,则有
(a^2+b^2)=[sin(A+B)]^2*(2R)^2=(sinC)^2*(2R)^2=(c/2R)^2*(2R)^2=c^2.
即a^2+b^2=c^2.
三角形ABC的形状为直角三角形.