1、证明:
∵OB=OD,
∴∠OBD=∠ODB,
∵OD//BC,
∴∠ODB=∠CBD,
∴∠OBD=∠CBD,
∴AD=CD(等角对等弦)。
2、
解:
∵AB是⊙O的直径,
∴∠ACB=90°,
设BC=x,则AC=4x/3,
根据勾股定理:BC²+AC²=AB²,
25x²/9=100
x=6,
即BC=6,AC=8,
∵AD=CD,
∴弧AD=弧CD,
∴OD垂直平分AC(垂径定理逆定理),
∴AE=CE=4,∠AEO=90°,
∵OA=5,
∴OE=3,
DE=OD-OE=5-3=2,
DE:AE=2:4=1:2 。