1 )△=[2(m+1)]^2-4*(m^2-1)=8m+8≥0 ∴m≥-12)由韦达定理,x1+x2=-2(m+1);x1x2=m^2-1 ∵(x1-x2)^2=16-x1x2 ∴(x1+x2)^2-3x1x2=16 ∴4m^2+8m+4-3m^2+3=16 ∴m^2+8m-9=0 ∴m=-9 or m=1 ∵m≥-1 ∴m=1