设f(x)=|lnx|,若函数g(x)=f(x)-ax在区间(0,3]上有三个零点,则实数a的取值范围是(  )A.(0

2025-05-14 14:29:08
推荐回答(1个)
回答(1):

函数f(x)=|lnx|的图象如图示:

当a≤0时,显然,不合乎题意,
当a>0时,如图示,
当x∈(0,1]时,存在一个零点,
当x>1时,f(x)=lnx,
可得g(x)=lnx-ax,(x∈(1,3])
g′(x)=

1
x
?a=
1?ax
x

若g′(x)<0,可得x>
1
a
,g(x)为减函数,
若g′(x)>0,可得x<
1
a
,g(x)为增函数,
此时f(x)必须在[1,3]上有两个交点,
g(
1
a
)>0
g(3)≤0
g(1)≤0

 解得,
ln3
3
≤a<
1
e

在区间(0,3]上有三个零点时,
 
ln3
3
≤a<
1
e

故选D.