大一高数求大神帮忙

2025-05-14 00:10:58
推荐回答(2个)
回答(1):

回答(2):

两边取定积分,得
∫(a,b)f(x)dx=∫(a,b)xdx+2∫(a,b)f(x)dx·∫(a,b)dx
令∫(a,b)f(x)dx=u
u=x²/2|(a,b)+2(b-a)u
(1-2b+2a)u=1/2(b²-a²)
u=(b²-a²)/[2(1-2b+2a)]
所以
f(x)=x+2(b²-a²)/[2(1-2b+2a)]
=x+(b²-a²)/(1-2b+2a)