求帮助这两道定积分证明题,谢谢~

2025-05-19 00:20:34
推荐回答(1个)
回答(1):

①x∈[0,1]
0≤x^n≤1<π/2
0≤sin(x^n)<1
∫sin(x^n)dx≥0
②根据x≥0,sinx≤x
sin(x^n)≤x^n
∫sin(x^n)dx≤∫x^ndx
=1/(n+1)*[x^(n+1)]
=1/(n+1)
∴0≤∫≤1/(n+1)

若f(x)≠0,f(x)^2>0
∫f(x)^2dx>0矛盾
f(x)=0