(2014?兰州一模)质量M=3.0kg的长木板置于光滑水平面上,木板左侧放置一质量m=1.0kg的木块,右侧固定一

2025-05-19 18:33:45
推荐回答(1个)
回答(1):

(1)以木块与木板组成的系统为研究对象,从木块开始运动到两者速度相同的过程中,系统动量守恒,由动量守恒定律可得:mv0=(M+m)v1,解得v1=1m/s.
(2)木板与墙壁碰后返回,木块压缩弹簧,当弹簧压缩到最短时,木块与木板速度相等,在此过程中 两者组成的系统动量守恒,由动量守恒定律可得:Mv1-mv1=(M+m)v2,解得:v2=0.5m/s;
当弹簧压缩到最短时,弹簧弹性势能最大,由能量守恒定律可得:

1
2
mv02=
1
2
(M+m)v22+EPm+Q,
当木块到达木板最左端时两者速度相等,在此过程中,系统动量守恒,
由动量守恒定律可得:Mv1-mv1=(M+m)v3,解得:v3=0.5m/s;
从木块开始运动到木块再回到木板最左端的整个过程中,
由能量守恒定律可得:
1
2
mv02=
1
2
(M+m)v32+2Q,
解得:Q=3.75J,EPm=3.75J;
答:(1)木板与墙壁相碰时的速度v1=1m/s.
(2)整个过程中弹簧所具有的弹性势能的最大值Epm=3.75J.