(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在

2025-05-21 17:39:14
推荐回答(1个)
回答(1):

解:(1)在正方形ABCD中,
∵BC=CD,∠B=∠CDF,BE=DF,
∴△CBE≌△CDF,
∴CE=CF;
(2)如图2,延长AD至F,使DF=BE.连接CF,由(1)知△CBE≌△CDF,
∴∠BCE=∠DCF,
∴∠BCE+∠ECD=∠DCF+∠ECD
即∠ECF=∠BCD=90°,
又∠GCE=45°,
∴∠GCF=∠GCE=45°,
∵CE=CF,∠GCE=∠GCF,GC=GC,
∴△ECG≌△FCG,
∴GE=GF
∴GE=DF+GD=BE+GD;
(3)如图3,过C作CG⊥AD,交AD延长线于G,
在直角梯形ABCD中,
∵AD∥BC,
∴∠A=∠B=90°,
又∠CGA=90°,AB=BC,
∴四边形ABCD 为正方形,
∴AG=BC,
已知∠DCE=45°,
根据(1)(2)可知,ED=BE+DG,
所以10=4+DG,即DG=6,
设AB=x,则AE=x-4,AD=x-6
在Rt△AED中,  
,即
解这个方程,得:x=12,或x=-2(舍去),
∴AB=12,
所以梯形ABCD的面积为S=
答:梯形ABCD的面积为108。



                      (图3)