已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=12(|x-a2|+|x-2a2|-3a2).若?x∈R,f(x-2)≤f

2025-05-13 17:23:04
推荐回答(1个)
回答(1):

∵当x≥0时,f(x)=

1
2
(|x-a2|+|x-2a2|-3a2).
∴当0≤x≤a2时,f(x)=
1
2
(a2?x+2a2?x?3a2)
=-x;
当a2<x≤2a2时,f(x)=-a2
当x>3a2时,f(x)=x-3a2
画出其图象.
由于函数f(x)是定义在R上的奇函数,即可画出x<0时的图象,
与x>0时的图象关于原点对称.
∵?x∈R,f(x-2)≤f(x),
∴6a2≤2,
解得?
3
3
≤a≤
3
3

∴实数a的取值范围为?
3
3
≤a≤
3
3

故答案为:[?
3
3
3
3
]