已知各项均为正数的数列{an}的前n项和为Sn,且满足2Sn=an2+an.(1)求证:{an}为等差数列,并求数列{an}

2025-03-29 08:30:38
推荐回答(1个)
回答(1):

(1)由2Sn=an2+an.①
得2Sn-1=an-12+an-1.②
①-②,得:2an=an2+an?an?12?an?1
an+an?1an2?an?12
∴an-an-1=1,
∴{an}是公差为1的等差数列,
2S1a12+a1,得a1=1,
∴an=1+(n-1)×1=n.
(2)bn=2anlog 

1
2
2an=-n?2n
∴Hn=-(1×2+2×22+3×23+…+n×2n),
∴2Hn=-(22+2×23+3×24+…+n×2n+1),
∴Hn=2+22+23+…+2n-n×2n+1
=
2(1?2n)
1?2
?n×2n?1

=-n?2n+1+2n+1-2,
∵Hn+n?2n+1>50,
∴2n+1>52,
∴n的最小值为5.