设xyz=1,求x⼀(xy+x+1)+y⼀(yz+y+1)+z⼀(zx+z+1)的值。

2025-05-18 15:26:04
推荐回答(1个)
回答(1):

解:xyz=1
x/(xy+x+1)+y/(yz+y+1)+z/(zx+z+1)将x/(xy+x+1)中的1换为xyz得:
=x/(xy+x+xyz)+y/(yz+y+1)+z/(zx+z+1)
=1/(yz+y+1)+y/(yz+y+1)+z/(zx+z+1)
=(1+y)/(yz+y+1)+z/(zx+z+1)将(1+y)/(yz+y+1)中的1换为xyz得:
=(xyz+y)/(yz+y+xyz)+z/(zx+z+1)
=(xz+1)/(zx+z+1)+z/(zx+z+1)
=(zx+z+1)/(zx+z+1)
=1

如果您满意我的回答,请及时点击【采纳为满意回答】按钮!!!
手机提问的朋友在客户端右上角评价点【满意】即可!!!
你的采纳是我前进的动力!!!
谢谢!!!