(Ⅰ)设数列{an}公差为d,则 a1+a2+a3=3a1+3d=12,又a1=2,d=2.所以an=2n.(Ⅱ)由bn=an3n=2n3n,得 Sn=2?3+4?32+…(2n-2)3n-1+2n?3n,①3Sn=2?32+4?33+…+(2n-2)?3n+2n?3n+1.②将①式减去②式,得-2Sn=2(3+32+…+3n)-2n?3n+1=-3(3n-1)-2n?3n+1.所以Sn= 3(1?3n) 2 +n?3n+1.