已知各项均为正数的数列{an}满足an+12=2an2+anan+1,且a2+a4=2a3+4,其中n∈N*.(1)求数列{an}的通项公

2025-05-14 02:34:52
推荐回答(1个)
回答(1):

(1)∵an>0,∴由an+12=2an2+anan+1得:(

an+1
an
)2?
an+1
an
?2=0
,∴(
an+1
an
+1)(
an+1
an
?2)=0
,∴
an+1
an
=2

∴数列{an}是以2为公比的等比数列;
∴由a2+a4=2a3+4得:2a1+8a1=8a1+4,解得a1=2,∴an2n
(2)bn
2n?1
(2n?1)(2n+1?1)
=
1
2
(
1
2n?1
?
1
2n+1?1
)

Sn
1
2
[(
1
21?1
?
1
22?1
)+(
1
22?1
?
1
23?1
)
+…+(
1
2n?1
?
1
2n+1?1
)]
=
1
2
(1?
1
2n+1?1
)

∵n+1≥2,∴
1
2n+1?1
1
3
,∴
1
2
(1?
1
2n+1
)≥
1
3
,且
1
2
(1?
1
2n+1?1
)<
1
2

1
3
Sn
1
2