(1)∵an>0,∴由an+12=2an2+anan+1得:(
)2?an+1 an
?2=0,∴(an+1 an
+1)(an+1 an
?2)=0,∴an+1 an
=2;an+1 an
∴数列{an}是以2为公比的等比数列;
∴由a2+a4=2a3+4得:2a1+8a1=8a1+4,解得a1=2,∴an=2n.
(2)bn=
=2n?1 (2n?1)(2n+1?1)
(1 2
?1
2n?1
)1
2n+1?1
∴Sn=
[(1 2
?1
21?1
)+(1
22?1
?1
22?1
)+…+(1
23?1
?1
2n?1
)]=1
2n+1?1
(1?1 2
)1
2n+1?1
∵n+1≥2,∴
≤1
2n+1?1
,∴1 3
(1?1 2
)≥1 2n+1
,且1 3
(1?1 2
)<1
2n+1?1
;1 2
∴
≤Sn<1 3
.1 2