∵Sn=n2,
∴a1=s1=1,
n≥2时,an=sn-sn+1=n2-(n-1)2=2n-1,对n=1时也成立,
∴an=2n-1.
∴
=1
anan+1
=1 (2n?1)(2n+1)
(1 2
-1 2n?1
),1 2n+1
∴Pn=
+1
a1a2
+…+1
a2a3
=1
anan+1
(1?1 2
+1 3
?1 3
+…+1 5
-1 2n?1
)=1 2n+1
(1-1 2
)=1 2n+1
-1 2
,1 4n+2
∴
Pn=lim n→∞
(lim n→∞
-1 2
)=1 4n+2
.1 2
故选C.