设数列{an}的前n项和Sn=n2,如果Pn=1a1a2+1a2a3+…+1anan+1,则limn→∞Pn的值为(  )A.13B.?13C.1

2025-05-16 11:39:53
推荐回答(1个)
回答(1):

∵Sn=n2
∴a1=s1=1,
n≥2时,an=sn-sn+1=n2-(n-1)2=2n-1,对n=1时也成立,
∴an=2n-1.

1
anan+1
=
1
(2n?1)(2n+1)
=
1
2
1
2n?1
-
1
2n+1
),
∴Pn=
1
a1a2
+
1
a2a3
+…+
1
anan+1
=
1
2
(1?
1
3
+
1
3
?
1
5
+…+
1
2n?1
-
1
2n+1
)=
1
2
(1-
1
2n+1
)=
1
2
-
1
4n+2

lim
n→∞
Pn
=
lim
n→∞
1
2
-
1
4n+2
)=
1
2

故选C.