(1)解:∵∠C=90°,AD是△ABC的角平分线,DE⊥AB,
∴DE=CD=1,
∵AC=BC,∠C=90°,
∴∠B=45°,
∴△BDE是等腰直角三角形,
∴BD=
DE=
2
,
2
∴AC=BC=CD+BD=
+1;
2
(2)证明:在△ACD和△AED中,
,
AD=AD DE=CD
∴△ACD≌△AED(HL),
∴AC=AE,
∵△BDE是等腰直角三角形,
∴BE=DE=CD,
∵AB=AE+BE,
∴AB=AC+CD.