已知方程x^2-(tanθ+i)x-(i+2)=0

2025-05-21 11:07:01
推荐回答(1个)
回答(1):

条件“θ≠k∏+∏/2(k∈R)”中应该是 k∈Z,否则 θ 不是实数了 ,tanθ 也就没意义了。

若有纯虚数根x=ai(a为实数,a≠0,i为虚数单位),
代入原方程得 -a²-(tanθ+i)ai-(i+2)=0,即 tanθ=(-a²+a-(i+2))/(ai)
右边分子分母都乘以i,得 tanθ=((-a²i+ai-2i)+1)/(-a)
即 tanθ=(-1/a)+((a²-a+2)/a)i
因为 a为实数,a≠0,所以 (-1/a) 为非零实数,且((a²-a+2)/a)亦为实数,
又a²-a+2=(a-1/2)²+7/4≠0,所以((a²-a+2)/a)为非零实数,
所以 (-1/a)+((a²-a+2)/a)i 为虚数,

但 θ≠kπ+π/2 (k∈Z)时,tanθ为实数,所以 tanθ=(-1/a)+((a²-a+2)/a)i 自相矛盾,所以原方程无纯虚数根。