解答:证明:如图,
(1)∵AB∥CD,CD⊥AD,AD=CD=2AB=2,F为CD的中点,
∴ABFD为矩形,AB⊥BF.
∵DE=EC,∴DC⊥EF,又AB∥CD,∴AB⊥EF
∵BF∩EF=F,∴AB⊥面BEF,又AE?面ABE,
∴平面ABE⊥平面BEF.
(2)解:∵DE=EC,∴DC⊥EF,又PD∥EF,AB∥CD,∴AB⊥PD
又AB⊥PD,所以AB⊥面PAD,AB⊥PA.
以AB所在直线为x轴,AD所在直线为y轴,AP所在直线为z轴建立空间坐标系,
则B(1,0,0),D(0,2,0),P(0,0,a),C(2,2,0),E(1,1,
)a 2
=(?1,2,0),BD
=(0,1,BE
)a 2
平面BCD的法向量
=(0,0,1),n1
设平面EBD的法向量为
=(x,y,z),n2
由
?
⊥n2
BD
⊥n2
BE
,即
?n2
=0BD
?n2
=0BE
,取y=1,得x=2,z=?
?x+2y=0 y+
=0az 2
2 a
则
=(2,1,?n2
).2 a
所以cosθ=
=
2 a
4+1+
4 a2
2