f(x)=(m+n).n
=(sinx+√3cosx, 3/2).(√3cosx,1/2)
=√3(sinx+√3cosx)cosx + 3/4
=(√3/2)sin2x + 3(cosx)^2 +3/4
=(√3/2)sin2x + (3/2)( 1+cos2x) +3/4
= (√6/2)sin(2x+π/4) + 9/4
最小正周期=π
m+n=(sinx+√3cosx,3/2)
f(x)=sinx(sinx+√3cosx)+3/2
=sin²x+√3sinxcosx+3/2
=(1-cos2x)/2+√3/2 sin2x+3/2
=√3/2 sin2x -1/2 cos2x+2
=sin2xcosπ/6-cos2xsinπ/6+2
=sin(2x-π/6)+2
所以
最小正周期=2π/2=π