左-右,以xyz为分母进行通分,化简合并后,得分子:z(x-y)^2 + x(y-z)^2 + y(z-x)^2分母:xyz除成3个式子: (x-y)^2/xy + (y-z)^2/yz + (z-x)^2/xz利用 x^2 + y^2 >= 2xy 及初始条件即可证明上式每个式子都 >=0 。 即原式 左>= 右。