高中数学第十题求解

2025-05-20 05:02:32
推荐回答(2个)
回答(1):

10.由题意知:
2sin2x=sinθ+cosθ.........................................(1)
(sinx)^2=sinθcosθ........................................(2)
由(1)得4(sin2x)^2=1+2sinθcosθ
把(2)代入,得
4(sin2x)^2=1+2(sinx)^2
又1-2(sinx)^2=cos2x
所以4(sin2x)^2=1+1-cos2x
所以4-4(cos2x)^2=2-cos2x
即4(cos2x)^2-cos2x-2=0
设cos2x=t
则4t^2-t-2=0
所以t=(1±√(1+32))/8
=(1±√33)/8
即cos2x=(1±√33)/8

由(2)知
cos2x=1-2(sinx)^2=1-2sinθcosθ=1-sin2θ>=0
即cos2x>=0
所以cos2x=(1+√33)/8
故答案为A

回答(2):

2sin2x = sina+cosa ,(sinx)^2 = sina*cosa ,
所以 (2sin2x)^2 - 2(sinx)^2 = (sina+cosa)^2-2sinacosa = (sina)^2+(cosa)^2 = 1 ,
4[1-(cos2x)^2] + cos2x-1 = 1 ,
4(cos2x)^2 - cos2x - 2 = 0 ,
求根公式得 cos2x = (1±√33)/8 ,
由于 cos2x = (cosx)^2-(sinx)^2
= (sina+cosa)^2 / (4sinacosa) - sinacosa
= (sina-cosa)^2 / (4sinacosa)
= (sina-cosa)^2 / [4(sinx)^2]
≥ 0 ,
所以 cos2x = (1+√33)/8 。
选 A