(1)证明:由底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,解得BP=2
=BD
5
又M在PD上,且BM⊥PD,∴M为BD中点,∴AM⊥PD;
又BA⊥PA,且BA⊥AD,PA∩AD=A,∴BA⊥平面PAD,
∴BA⊥AM,
∵CD⊥AM,PD∩CD=D,∴AM⊥面PCD,
∵AM?平面ABM,
∴平面ABM⊥平面PCD;
(2)解:过M做ME⊥AD于E,则ME⊥面ABO,且ME=
PA=2,1 2
又O为BD中点,则S△ABO=
SABCD=1 4
×2×4=2,1 4
∴VOABM=
S△ABO×ME=1 3
×2×2=1 3
4 3